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Position Aware Linear Solid (PALS)

QOutline

Review the practical issue/problem of surface effects
Introduce (PALS) & compare linear peridynamic solid (LPS)
Selecting/creating/evaluating influence functions

Matching deformations: dilatation, deviatoric

Demonstration calculations verify efficacy of PALS model

O A A A

Summary, closing commments, and path forward
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What is the Dreaded Surface Effect?

Example: Isotropic-Ordinary Model (LPS)

The following related aspects

Y p— contribute to mismatch.
—_— leasurement
— LPS (No surface correction)

@ Geometric surface effects
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Ordinary peridynamic models

Dreaded Surface Effect

Causes relate to material points near surface

% Mathematical models assume all points are in the bulk

+ Points near surface are missing bonds
* Missing bonds imply and induce incorrect material properties
+ In the bulk mathematical models are consistent

% Isotropic ordinary materials have a dilatation defect at the surface

Surface

In the bulk
e by Missing bonds
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Isotropic ordinary elastic models
Compare LPS with PALS
Kinematics

IX|  Bond: £ =x —x=X(§)
Linear peridynamic solid (LPS) model

1, o 3
W=3K0"+-(we)ee,  6=_(0X|)ec

15
m=olX|s|X|, a=-—k
m

PALS model

1
W=2K0*+pu(ce)es, 6=(alX|)ec
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Compare LPS with PALS

Linear peridynamic solid model
% o is given and used for every point in mesh
PALS model
% , o are computed for each point in mesh
9 Initial influence functions @°, ¢° given
4 Select @, o as best approximations to w0 subject to

kinematic constraints: matching deformations e*(£) = ééllké
1 K
I(QJ):E(Q—QO ; [wx Jee —Ter}

1 0 0 c k k k
N7 =5(e-a")e(0-0") - Y ¢ |(oe) oc" 7]
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PALS: Selecting dilatation influence functions

Linear problem for Lagrange multipliers A

Functional
1 K
I(QJ):E(Q—QO ; [wx )ee k_ TrHF
Variation

61—VI-5(0+§£57L
- = v

Substituting (2) into (1) gives linear problem for Lagrange multipliers

al
S = O — (ox) e e = Tr HF (1)
K
VI = 0 — 0=0"+) Axe )
k=1
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Matching deformations: Sample Set
Gl

Probe operator ¢*(&) ]

Dilatation

Let probe A be denoted by A=XX =YY =277

XX 0070 0 0][00 0

000l ]O0OYo| |00 0

0 00 [0 0 0] [00 2z
P e pe

Let bond & components be denoted by {a,b,c}

. Ad? ,  Ab? 5 Ac?
= — e = — e = —
] ] 4

e
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Matching deformations: Sample Set
Gl

Probe operator ¢*(&) ]

Deviatoric

Let probe A be denoted by A=XY =XZ=YZ

0 XY O 0 0 Xz 0 0 O
Xy 0 O 0 0 O 0 0 YZ
0 0 O XZ 0 0 0 Y7 O
H4 [.}g ‘,6

Let bond & components be denoted by {a,b,c}

4 2abA s 2acA 6 2bcA
= e = ——- e =
< S| S|
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Model problem: simple shear
PALS versus LPS: expectation dilatation 6 =0

Simple shear

u=7y; v=0; w=0; y=10x10"°

Dilatation
LPS PALS
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Model problem: simple shear
PALS versus LPS

Simple shear

u=7y; v=0; w=0; y=10x10"°

Wy =1u¥; u=6.923x10""; W, ~.34615

PALS
0.34615-
' :
i
y M 034615k
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Demonstration calculation: Recover Young’s Modulus £

2
, o =k
Influence functions: @" = ¢’ = ¢ &2
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Re-visit tensile test using PALS and LPS

Influence functions: ®° = ¢” = 1

o Results
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Position Aware Linear Solid (PALS)

Summary
%+ Reviewed the practical issue/problem of surface effects
% Introduced novel Position Aware Linear Solid model (PALS)
9 PALS dilatation and energy density correct in pure shear

9~ Demonstration calculations show efficacy of PALS

THANK YOU
Questions?
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